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Teaser: LLMs as Copilots for Theorem Proving
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https://github.com/yangky11/lean4-example/tree/ml4tp-tutorial


Formal Theorem Proving
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Theorem

Proof



Formal Theorem Proving

• Theorems/proofs represented formally as programs
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Formal Theorem Proving

• Theorems/proofs represented formally as programs
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[Hales et al., "A Formal Proof of the Kepler Conjecture", 2017]
[Leroy et al., "CompCert - A Formally Verified Optimizing Compiler", 2016]

Theorem

Proof

Software

Mathematics

Formalize



Formal Theorem Proving

• Theorems/proofs represented formally as programs
• Proofs can be checked easily
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Formal Theorem Proving

• Theorems/proofs represented formally as programs
• Proofs can be checked easily
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Software

Mathematics
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[Hales et al., "A Formal Proof of the Kepler Conjecture", 2017]
[Leroy et al., "CompCert - A Formally Verified Optimizing Compiler", 2016]



Why is Theorem Proving Important for AI?
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The Era of Large Language Models (LLMs)
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[Ma et al., Eureka, 2023] [Wang et al., Voyager, 2023]



Theorem Proving and LLMs
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Code generation
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Theorem proving



Theorem Proving and LLMs
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Mathematical reasoning
with LLMs

Code generation
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Theorem proving



Mathematical Reasoning with LLMs
• GPT-4 scored 89th percentile on SAT Math
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Mathematical Reasoning with LLMs
• GPT-4 scored 89th percentile on SAT Math

• Specialized math LLMs: Minerva, MetaMath, WizardMath, MAmmoTH, Llemma
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[Lewkowycz et al., Minerva, 2022] [Azerbayev et al., Llemma, 2023]



Informal vs. Formal Mathematical Reasoning
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Informal Formal

Important for LLMs to tackle advanced mathematics
• Grounded in environments that can provide feedback
• Simple and rigorous evaluation: formal proofs can be 

checked (no hallucination)



Checking Mathematical Proofs is Hard for Humans
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Theorem Proving and LLMs
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Theorem Proving and LLMs
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Code Generation with LLMs
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Passing a few testing examples ≠ correctness



Code Generation with LLMs
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What if x and y are negative?

Passing a few testing examples ≠ correctness



Code Generation with LLMs
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Passing a few testing examples ≠ correctness
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How Can We Trust AI-Generated Code?



Theorem Proving for Verified Code Generation

• Generate code + formal specification (theorem) + formal proof
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Code

[Sun and Sheng et al., "Clover: Closed-Loop Verifiable Code Generation", 2023]

Code generation



Theorem Proving for Verified Code Generation

• Generate code + formal specification (theorem) + formal proof
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Code

[Sun and Sheng et al., "Clover: Closed-Loop Verifiable Code Generation", 2023]

Code generation

Verified Code generation

Specification (Theorem)



Theorem Proving for Verified Code Generation

• Generate code + formal specification (theorem) + formal proof
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Code

Specification (Theorem)

Proof

[Sun and Sheng et al., "Clover: Closed-Loop Verifiable Code Generation", 2023]

Code generation

Verified Code generation



Theorem Proving and LLMs: Takeaways
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Mathematical reasoning
with LLMs

Code generation
with LLMs

Theorem proving

• Elementary math -> advanced math
• Verified code generation
• Feedback & evaluation at scale: AI mathematicians/programmers



How to Prove Theorems (with Machine Learning)?
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Proof Assistants (Interactive Theorem Provers)
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Theorem

Proof



Proof Assistants (Interactive Theorem Provers)
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Humans Proof assistants+
IDEs for writing formal proofs

Theorem

Proof



Examples of Proof Assistants
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Coq
[Barras et al., 1997]

Isabelle
[Nipkow et al., 2002]

Lean
[de Moura et al., 2015]

• >100K proofs in different repos
• Popular for software verification, e.g.,

CompCert [Leroy et al., 2016]

• ~100K proofs in Mathlib
• Liquid tensor experiment 

[Commelin, 2022]
• Polynomial Freiman-Ruzsa 

conjecture (led by Terence Tao)

• Large formal libraries: ~250K
proofs
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[Thakur et al., COPRA, 2023]
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[Commelin, 2022]
• Polynomial Freiman-Ruzsa 

conjecture (led by Terence Tao)
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Proving Theorems Using Language Models
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Proving Theorems Using Language Models
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Proving Theorems Using Language Models
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[Vaswani et al., Transformer, 2017]

Input: Theorem

Output: Proof



Generating Proof Steps (Tactics)
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Generating Proof Steps (Tactics)
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⊢ ∀ (a b c : ℕ), a + b + c = a + c + b

Input: Proof state



Generating Proof Steps (Tactics)
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⊢ ∀ (a b c : ℕ), a + b + c = a + c + b a b c: ℕ
⊢ a + b + c = a + c + b

intro a b c

Input: Proof state Output: Tactic



Generating Proof Steps (Tactics)
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⊢ ∀ (a b c : ℕ), a + b + c = a + c + b a b c: ℕ
⊢ a + b + c = a + c + b

intro a b c

Input: Proof state Output: Tactic

rw [Nat.add_right_comm]



Generating Proof Steps (Tactics)
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⊢ ∀ (a b c : ℕ), a + b + c = a + c + b a b c: ℕ
⊢ a + b + c = a + c + b

intro a b c

Input: Proof state Output: Tactic

rw [Nat.add_right_comm]

Tactic generator



Generating Proof Steps (Tactics)

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 46

⊢ ∀ (a b c : ℕ), a + b + c = a + c + b a b c: ℕ
⊢ a + b + c = a + c + b

intro a b c rw [Nat.add_right_comm]

norm_cast

apply Nat.rec



Searching for Proofs
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⊢ ∀ (a b c : ℕ), a + b + c = a + c + b a b c: ℕ
⊢ a + b + c = a + c + b

intro a b c rw [Nat.add_right_comm]

norm_cast

apply Nat.rec

norm_cast

apply Nat.rec



Searching for Proofs
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⊢ ∀ (a b c : ℕ), a + b + c = a + c + b a b c: ℕ
⊢ a + b + c = a + c + b

intro a b c rw [Nat.add_right_comm]

norm_cast

apply Nat.rec

norm_cast

apply Nat.rec

Classical proof search algorithms
• Depth first search (DFS)
• Breadth first search (BFS)
• …



Demo: 
A Simple Theorem Prover Using Language Models

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 49

https://github.com/yangky11/ml4tp-tutorial/blob/main/main.ipynb
https://github.com/yangky11/ml4tp-tutorial/blob/main/main.ipynb


Improving the Simple Prover

• Proof search

• Premise selection
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Best First Search
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• Explore the most promising node

• Use accumulated scores from the tactic 
generator to rank the nodes



Best First Search

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 52

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

• Explore the most promising node

• Use accumulated scores from the tactic 
generator to rank the nodes

-0.1

-0.05

-0.1 + (-0.05) = -0.15



Best First Search

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 53

[Han et al., PACT, ICLR 2022]
[Polu et al., ICLR 2023]
[Jiang et al., Thor, NeurIPS 2022]
[Yang et al., LeanDojo, NeurIPS 2023]
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• Explore the most promising node

• Use accumulated scores from the tactic 
generator to rank the nodes

• Simple and widely used



Hyper Tree Proof Search
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[Lample et al., "HyperTree Proof Search for Neural Theorem Proving", NeurIPS 2022]

• Inspired by Monte Carlo Tree Search (MCTS)
• Update visit counts and estimated values for each node



Hyper Tree Proof Search
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[Lample et al., "HyperTree Proof Search for Neural Theorem Proving", NeurIPS 2022]

• Inspired by Monte Carlo Tree Search (MCTS)
• Update visit counts and estimated values for each node



Hyper Tree Proof Search
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[Lample et al., "HyperTree Proof Search for Neural Theorem Proving", NeurIPS 2022]

• Inspired by Monte Carlo Tree Search (MCTS)
• Update visit counts and estimated values for each node



Hyper Tree Proof Search
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[Lample et al., "HyperTree Proof Search for Neural Theorem Proving", NeurIPS 2022]

• Inspired by Monte Carlo Tree Search (MCTS)
• Update visit counts and estimated values for each node



Is Proof Search Really Necessary?

• Baldur: It’s possible to build state-of-the-art provers without search
• 6B and 62B models finetuned from Minerva on Isabelle proofs
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[First et al., "Baldur: Whole-Proof Generation and Repair with Large Language Models", FSE 2023]



Premise Selection

• Premise selection: A key challenge in theorem proving
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Premise Selection

• Premise selection: A key challenge in theorem proving
• Studied as a separate task w/o theorem proving

• Recent work integrate premise selection into theorem proving
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[Irving et al., DeepMath, NeurIPS 2016]
[Wang et al., "Premise Selection for Theorem Proving by Deep Graph Embedding", NeurIPS 2017]

[Mikuła et al., "Magnushammer: A Transformer-based Approach to Premise Selection", 2023]
[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurIPS 2023]



Magnushammer

• Premises selected by Transformer + a simple symbolic prover
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[Mikuła et al., "Magnushammer: A Transformer-based Approach to Premise Selection", 2023]



Magnushammer

• Premises selected by Transformer + a simple symbolic prover
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[Mikuła et al., "Magnushammer: A Transformer-based Approach to Premise Selection", 2023]



Magnushammer

• Premises selected by Transformer + a simple symbolic prover

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 63

[Mikuła et al., "Magnushammer: A Transformer-based Approach to Premise Selection", 2023]



Magnushammer

• Premises selected by Transformer + a simple symbolic prover
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[Mikuła et al., "Magnushammer: A Transformer-based Approach to Premise Selection", 2023]



Magnushammer

• Premises selected by Transformer + a simple symbolic prover
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[Mikuła et al., "Magnushammer: A Transformer-based Approach to Premise Selection", 2023]



ReProver: Retrieval-Augmented Prover

• Given a state, we retrieve premises from accessible premises

66Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurIPS 2023]



ReProver: Retrieval-Augmented Prover

67

• Given a state, we retrieve premises from accessible premises

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurIPS 2023]



ReProver: Retrieval-Augmented Prover

68

• Given a state, we retrieve premises from accessible premises

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurIPS 2023]



ReProver: Retrieval-Augmented Prover
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• Given a state, we retrieve premises from accessible premises

• Retrieved premises are concatenated with the state and used for tactic generation
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[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurIPS 2023]



ReProver: Retrieval-Augmented Prover
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• Given a state, we retrieve premises from accessible premises

• Retrieved premises are concatenated with the state and used for tactic generation

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurIPS 2023]



Premise Retrieval Improves Theorem Proving
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[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurIPS 2023]



Recap
• Theorem proving can help LLMs understand mathematics and generate verifiable code
• LLMs for theorem proving

• Tactic generator: state -> tactics
• Proof search: tactics -> proof
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Slides, demos, etc. will be available at:
machine-learning-for-theorem-proving.github.io

https://machine-learning-for-theorem-proving.github.io/


Open-Source Tools

• Isabelle: PISA
• Coq: GamePad, CoqGym, Proverbot9001
• Lean: LLMStep, lean-gym
• Others: HOList, INT
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Extract data & interact with Lean Training & evaluation Use LLMs in proof assistants

https://github.com/albertqjiang/Portal-to-ISAbelle
https://github.com/ml4tp/gamepad
https://github.com/princeton-vl/CoqGym
https://github.com/UCSD-PL/proverbot9001
https://github.com/wellecks/llmstep
https://github.com/openai/lean-gym
https://sites.google.com/view/holist/home
https://github.com/albertqjiang/INT


Related Events @ NeurIPS 2023

LeanDojo
• Oral: 10 AM Tuesday
• Poster: 10:45 AM Tuesday

MATH-AI Workshop
• Friday, Room 217-219
• Posters of Lean Copilot and other

interesting works!
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Guiding Formal Maths with 
Informal Maths

Albert Q. Jiang, University of Cambridge

1



What is formal mathematics

Simple theorems 
about simple objects:

1 + 1 = 2

Principia Mathematica
Russell and Whitehead

Kepler Conjecture
Hales

Complex theorems 
about simple objects:

Optimal packing of 
spheres

Liquid Tensor Experiment
Scholze and Commelin

Complex theorems about 
complex objects:

Theorem about condensed 
real vector spaces

21910 2015 2022



3
2023

Formal mathematics in real time Formalised in 3 weeks!

Polynomial Freiman-Ruzsa conjecture



What is a proof assistant?

● Has some logical/type-theory basis, with axioms, rules and theorems

● Proving a theorem: 

○ Iteratively applying rules of the formal system to transform the goal

○ Until it becomes trivial



Example of a proof in Lean



The goal of automated formal theorem proving

Formal 
statement Formal proof?

Verifier

6



How can machine learning come in?

7

Components of a Markov Decision Process

Go

Theorem 
Proving

state action reward

A board position

Goal (s) to prove

Place a stone

Use a tactic

⊢ 1+1 = 2 Eq.refl _

1, 0, or -1 at end 
of the game

1 for QED,

0 for failure

transition



How can machine learning come in? (cont.)

8
Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489.



How can machine learning come in? (cont.)

9
Lample, Guillaume, et al. "Hypertree proof search for neural theorem proving." Advances in Neural Information Processing Systems 35 (2022): 
26337-26349.



But there’s an important aspect of mathematics

Mathematics is mostly written in 
natural language and not utilised by 
machine learning at this point!

10
Not yet fully formalised on a computer!



What we have

Informal statements

Informal proofs

Formal 
statements

Formal proofs

11



The goal of this presentation

Informal statements

Informal proofs

Formal 
statements

Formal proofs

12



Making better informal reasoners

Informal statements

Informal proofs

Formal 
statements

Formal proofs

13



Make better informal reasoners

1. Find high-quality mathematical content online

14



Data collection: OpenWebMath

Paster, Keiran, et al. "OpenWebMath: An Open Dataset of High-Quality Mathematical Web Text." arXiv preprint arXiv:2310.06786 (2023).

15



Make better informal reasoners (cont.)

2. Fine-tune or continue pretraining a strong base language model on it

16

PaLM CodeLlama

Lewkowycz, Aitor, et al. "Solving quantitative reasoning problems with language models." Advances in Neural Information Processing Systems 35 
(2022): 3843-3857.
Azerbayev, Zhangir, et al. "Llemma: An open language model for mathematics." arXiv preprint arXiv:2310.10631 (2023).



Specialising models on informal maths

PaLM 
(closed)

CodeLlama 
(open)

Google’s secret 
sauce mathematical 
dataset 🪄(closed)

ProofPile 2 = 
OpenWebMath + 

Code + Arxiv (open)

��
Minerva 
(closed)

(open)

17



Turning informal data into formal ones

Informal statements

Informal proofs

Formal 
statements

Formal proofs

18



Turning informal data into formal data

Autoformalization with large language models

Wu, Yuhuai, et al. "Autoformalization with large language models." Advances in Neural Information Processing Systems 35 (2022): 32353-32368.

Informal 
statements

Formal 
statements

“Good day” “Bonjour”

x

19



Does this work?

Yes, to an extent.

Manually examined 150 
informal → formal statement 
translations. Correctness rate 
is 25%.

Drawback: we don’t 
automatically know which 
translations are right.

Informal statements

Formal statements Formal proofs

Additional data

20



Put everything together

Informal statements

Informal proofs

Formal 
statements

Formal proofs

21



Alignment challenge: different levels of reasoning

22

● Solution: translate into 
proof sketches

● Formal proof sketches 
encapsulate the high-level 
ideas of the proof.

● They are better aligned 
with the informal proofs 

● We copy segments of the 
informal proof as in-line 
comments to create (even) 
better alignment.



Getting formal proofs: Draft, Sketch, and Prove

Jiang, Albert Q., et al. "Draft, sketch, and prove: Guiding formal theorem provers with informal proofs." arXiv preprint arXiv:2210.12283 (2022).
23



Getting formal proofs: Draft, Sketch, and Prove

Jiang, Albert Q., et al. "Draft, sketch, and prove: Guiding formal theorem provers with informal proofs." arXiv preprint arXiv:2210.12283 (2022).
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Getting formal proofs: Draft, Sketch, and Prove

Jiang, Albert Q., et al. "Draft, sketch, and prove: Guiding formal theorem provers with informal proofs." arXiv preprint arXiv:2210.12283 (2022).
25
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● MiniF2F = Reference benchmark developed by 
OpenAI

● Formalized problems from olympiads (IMO, AIME, 
AMC), high-schools and undergraduate math classes

● Valid / Test splits:
○ 488 problems
○ Metamath / Isabelle / Lean / Hol-light

Benchmark
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Results



Takeaways

- Machine learning methods for formal mathematics should not discard informal 
mathematics

- That’s where (almost) all the data is!

- LLMs gave us the opportunity to realistically convert informal maths to formal 
maths

- But the detailed implementation needs careful thought

28



NeurIPS Tutorial on Machine Learning for Theorem Proving 
December 11, 2023

Machine Learning for  
Formal Software Verification

Emily First, Albert Q Jiang, Kaiyu Yang



Quick Recap

2

● Proof assistants

● Machine learning methods for theorem proving

● Formalizing and proving mathematics



Why should you care about  
formal software verification?



Software Bugs Matter

In 2020, CISQ estimated that software failures cost 
the economy $1.56 trillion dollars annually

4



Formal Software Verification

Program implementation

QED

Specifications

Mathematical proofs 
5

Proof Engineer

QED

- Think about the desired & actual behavior of the program 

- Perhaps finding & fixing bugs in the process 

- Make explicit which parts of the system are trusted

- Decrease the burden of trust as more of the system is verified

Ringer et al. (2020) “QED at Large: A Survey of Engineering of Formally Verified Software”



Software Development Life Cycle

Requirements

QED

Lists!

The length of a reversed list 
is the same as the length of 

the original list

Theorem len_rev_unchanged: 
forall (A: Type) (l: list A),  
length (rev l) = length l.



Software Development Life Cycle

Requirements Design

QED

Lists! Theorem len_rev_unchanged: 
forall (A: Type) (l: list A),  
length (rev l) = length l.

Lemma app_length : forall l l' : list A,  
length (l++l') = length l + length l'.

Helper 
Lemmas!



Software Development Life Cycle

Requirements Design Implementation

QED

Lists! Fixpoint rev (l:list A) : list A :=
    match l with
      | [] => []
      | x :: l' => rev l' ++ [x]
    end.

https://coq.inria.fr/doc/master/stdlib/Coq.Lists.List.html#rev
https://coq.inria.fr/doc/master/stdlib/Coq.Lists.List.html#l:323
https://coq.inria.fr/doc/master/stdlib/Coq.Init.Datatypes.html#list
https://coq.inria.fr/doc/master/stdlib/Coq.Lists.List.html#ListOps.A
https://coq.inria.fr/doc/master/stdlib/Coq.Init.Datatypes.html#list
https://coq.inria.fr/doc/master/stdlib/Coq.Lists.List.html#ListOps.A
https://coq.inria.fr/doc/master/stdlib/Coq.Lists.List.html#l:323
https://coq.inria.fr/doc/master/stdlib/Coq.Lists.List.html#ae9a5e1034e143b218b09d8e454472bd
https://coq.inria.fr/doc/master/stdlib/Coq.Lists.List.html#ae9a5e1034e143b218b09d8e454472bd
https://coq.inria.fr/doc/master/stdlib/Coq.Init.Datatypes.html#::list_scope:x_'::'_x
https://coq.inria.fr/doc/master/stdlib/Coq.Lists.List.html#rev:324
https://coq.inria.fr/doc/master/stdlib/Coq.Init.Datatypes.html#bc347c51eaf667706ae54503b26d52c6
https://coq.inria.fr/doc/master/stdlib/Coq.Lists.List.html#ddd65c2f7ee73ecec433744948d846bb
https://coq.inria.fr/doc/master/stdlib/Coq.Lists.List.html#ddd65c2f7ee73ecec433744948d846bb


Software Development Life Cycle

Requirements Design Verification

QED

Implementation

QED

Lists!
Proof.
    induction l.
    - auto.
    - assert (H: rev (a :: l) = (rev l) ++ [a]) by auto.
      rewrite H.
      simpl.
      rewrite app_length.
      simpl.
      rewrite IHl.
      rewrite PeanoNat.Nat.add_1_r.
      reflexivity.
Qed.



Software Development Life Cycle

Requirements Design Verification

QED

Implementation Maintenance

QED

Lists!

Changes to 
dependencies! 

New 
assertions! New 

requirements!



Software Development Life Cycle

Requirements Design Verification

QED

Implementation Maintenance

Does anyone actually do this?



Formal Software Verification: real-world examples

12



Formal Software Verification: real companies do it

13
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Formal Verification: can produce better quality software

(2011)

CompCert was the only one for which Csmith could not find bugs!

Yang et al (2011) “Finding and Understanding Bugs in C Compilers”



Prohibitively difficult 
Verified software requires a lot of time and a lot of proofs in relation to code

Formal Certification of a Compiler Back-end

or: Programming a Compiler with a Proof Assistant

Xavier Leroy

INRIA Rocquencourt

Xavier.Leroy@inria.fr

Abstract

This paper reports on the development and formal certification
(proof of semantic preservation) of a compiler from Cminor (a C-
like imperative language) to PowerPC assembly code, using the
Coq proof assistant both for programming the compiler and for
proving its correctness. Such a certified compiler is useful in the
context of formal methods applied to the certification of critical
software: the certification of the compiler guarantees that the safety
properties proved on the source code hold for the executable com-
piled code as well.

Categories and Subject Descriptors F.3.1 [Logics and meanings
of programs]: Specifying and verifying and reasoning about
programs—Mechanical verification.; D.2.4 [Software engi-
neering]: Software/program verification—Correctness proofs,
formal methods, reliability; D.3.4 [Programming languages]:
Processors—Compilers, optimization

General Terms Languages, Reliability, Security, Verification.

Keywords Certified compilation, semantic preservation, program
proof, compiler transformations and optimizations, the Coq theo-
rem prover.

1. Introduction

Can you trust your compiler? Compilers are assumed to be seman-
tically transparent: the compiled code should behave as prescribed
by the semantics of the source program. Yet, compilers – and espe-
cially optimizing compilers – are complex programs that perform
complicated symbolic transformations. We all know horror stories
of bugs in compilers silently turning a correct program into an in-
correct executable.

For low-assurance software, validated only by testing, the im-
pact of compiler bugs is negligible: what is tested is the executable
code produced by the compiler; rigorous testing will expose errors
in the compiler along with errors in the source program. The picture
changes dramatically for critical, high-assurance software whose
certification at the highest levels requires the use of formal meth-
ods (model checking, program proof, etc). What is formally verified
using formal methods is almost universally the source code; bugs
in the compiler used to turn this verified source into an executable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’06 January 11–13, 2006, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

can potentially invalidate all the guarantees so painfully obtained
using formal methods. In other terms, from a formal methods per-
spective, the compiler is a weak link between a source program
that has been formally verified and a hardware processor that, more
and more often, has also been formally verified. The safety-critical
software industry is aware of this issue and uses a variety of tech-
niques to alleviate it, such as conducting manual code reviews of
the generated assembly code after having turned all compiler opti-
mizations off. These techniques do not fully address the issue, and
are costly in terms of development time and program performance.

An obviously better approach is to apply formal methods to
the compiler itself in order to gain assurance that it preserves the
semantics of the source programs. Many different approaches
have been proposed and investigated, including on-paper and
on-machine proofs of semantic preservation, proof-carrying code,
credible compilation, translation validation, and type-preserving
compilers. (These approaches are compared in section 2.) For
the last two years, we have been working on the development of
a realistic, certified compiler. By certified, we mean a compiler
that is accompanied by a machine-checked proof of semantic
preservation. By realistic, we mean a compiler that compiles a
language commonly used for critical embedded software (a subset
of C) down to assembly code for a processor commonly used in
embedded systems (the PowerPC), and that generates reasonably
efficient code.

This paper reports on the completion of one half of this
program: the certification, using the Coq proof assistant [2], of
a lightly-optimizing back-end that generates PowerPC assembly
code from a simple imperative intermediate language called
Cminor. A front-end translating a subset of C to Cminor is being
developed and certified, and will be described in a forthcoming
paper.

While there exists a considerable body of earlier work on
machine-checked correctness proofs of parts of compilers (see
section 7 for a review), our work is novel in two ways. First, recent
work tends to focus on a few parts of a compiler, mostly opti-
mizations and the underlying static analyses [18, 6]. In contrast,
our work is modest on the optimization side, but emphasizes the
certification of a complete compilation chain from a structured im-
perative language down to assembly code through 4 intermediate
languages. We found that many of the non-optimizing translations
performed, while often considered obvious in compiler literature,
are surprisingly tricky to formally prove correct. The other novelty
of our work is that most of the compiler is written directly in
the Coq specification language, in a purely functional style. The
executable compiler is obtained by automatic extraction of Caml
code from this specification. This approach has never been applied
before to a program of the size and complexity of an optimizing
compiler.

POPL 2006 

Proof is about 8 times 
bigger than the 
compiler code

3 person years of 
work

2

Comprehensive Formal Verification of an OS Microkernel

GERWIN KLEIN, JUNE ANDRONICK, KEVIN ELPHINSTONE, TOBY MURRAY,
THOMAS SEWELL, RAFAL KOLANSKI, and GERNOT HEISER, NICTA and UNSW, Sydney,
Australia

We present an in-depth coverage of the comprehensive machine-checked formal verification of seL4, a
general-purpose operating system microkernel.

We discuss the kernel design we used to make its verification tractable. We then describe the functional
correctness proof of the kernel’s C implementation and we cover further steps that transform this result into
a comprehensive formal verification of the kernel: a formally verified IPC fastpath, a proof that the binary
code of the kernel correctly implements the C semantics, a proof of correct access-control enforcement, a
proof of information-flow noninterference, a sound worst-case execution time analysis of the binary, and
an automatic initialiser for user-level systems that connects kernel-level access-control enforcement with
reasoning about system behaviour. We summarise these results and show how they integrate to form a
coherent overall analysis, backed by machine-checked, end-to-end theorems.

The seL4 microkernel is currently not just the only general-purpose operating system kernel that is fully
formally verified to this degree. It is also the only example of formal proof of this scale that is kept current
as the requirements, design and implementation of the system evolve over almost a decade. We report on
our experience in maintaining this evolving formally verified code base.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification; D.4.5
[Operating Systems]: Reliability—Verification

General Terms: Verification; Security; Reliability

Additional Key Words and Phrases: seL4, Isabelle/HOL, operating systems, microkernel, L4

ACM Reference Format:

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell, Rafal Kolanski, and
Gernot Heiser. 2014. Comprehensive formal verification of an OS microkernel. ACM Trans. Comput. Syst.
32, 1, Article 2 (February 2014), 70 pages.
DOI:http://dx.doi.org/10.1145/2560537

1. INTRODUCTION
This article presents a detailed coverage of the comprehensive formal verification of
the seL4 microkernel, from its initial functional correctness proof to more recent re-
sults, which extend the assurance argument up to higher-level security properties and
down to the binary level of its implementation.

The target of our verification, the kernel, is the most critical part of a system, which
is our motivation for starting system verification with this component. The customary
definition of a kernel is the software that executes in the privileged mode of the hard-

NICTA is funded by the Australian Government as represented by the Department of Broadband, Communi-
cations and the Digital Economy and the Australian Research Council through the ICT Centre of Excellence
program.
Authors’ address: NICTA, Level 4, 223 Anzac Pde, Sydney NSW 2052, Australia; Correspondence email:
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for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c� 2014 ACM 0734-2071/2014/02-ART2 $15.00
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11 person years of 
work
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Virtually all software that ships today is unverified.



How do programmers deal with hard things?

16

Automation!



Software Development Life Cycle

Requirements Design Verification

QED

Implementation Maintenance

QED

• Automating the process using ML 
• Work that has been done with an eye towards ML approaches 
• Parts of the process that are largely untouched — opportunities!
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CoqHammer

Constraint-solver based proof automation

• Restricted by precomputed facts


• Cannot perform induction


• Struggle with higher-order logic

Complementary to machine learning techniques!

QED



Machine Learning: proof synthesis

19

tactic1 tactic2 tactic3Proof stateContext Model

check

PROOF  
ASSISTANT

QED

…

QED



Machine Learning: proof synthesis QED

How well does this work for proofs of software correctness?

Succeeds at most 30% of the time

Failing proofs means that your code is not verified!

Need methods for debugging and recovering from proof search failures

Are only “easy” proofs being synthesized?



QED

Agrawal et al (2023) “Proofster: Automated Formal Verification”
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QED



QED



QED



Visualization of the proof search tree could help 
programmer understand why search failed

QED
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Model?

QED

QED
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Zhang et al (2021) “Online Machine Learning Techniques for Coq: A Comparison”

Online Learning

Locality sensitive hashing 
(LSH) forests for  

online approximate k-NN 

Online random forests 

QED



Ensemble learning

Proof script

Models

Proof script

Proof script

Proof script

Proof script

Proof script

Search Output

28

QED

First et al (2022) “Diversity-Driven Automated Formal Verification”

Diva



Proof script

Ensemble learning
Models

Proof script

Proof script

Proof script

Proof script

Proof script

Search Output

Coq
Check

29

QED

First et al (2022) “Diversity-Driven Automated Formal Verification”

Diva



Software Development Life Cycle

Requirements Design Verification

QED

Implementation Maintenance

QED Premise 
Selection 
Approach

Lemmas, 
Definitions, etc. 

Repository

“Relevant” Premises
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Sivaraman et al (2022) “Data-Driven Lemma Synthesis for Interactive Proofs”

Could potentially be improved using machine learning!



Software Development Life Cycle

Requirements Design Verification

QED

Implementation Maintenance

QED



Software Refactoring



Nie et al (2021) “Roosterize: Suggesting Lemma Names for Coq Verification Projects Using Deep Learning”
34

RNNs to learn and suggest lemma names

LLMs would likely help even more!



Nie et al (2020) “Learning to Format Coq Code Using Language Models” 35

RNNs and N-grams to learn and suggest space formatting

LLMs would likely help even more!



Software Evolution



QED

Change to 
dependency! 

Need to change 10+ 
lemmas and definitions

5 broken 
proofs!QEDQED

QEDQED
QED

Ringer et al (2020) “REPLica: REPL instrumentation for Coq Analysis”

Not just tedious — 
can be quite 

challenging even for 
experts!

Only 
able to fix 

1 proof!



Proof repair across commits dataset: PRISM

Reichel et al (2023) “Proof Repair Infrastructure for Supervised Models: Building a Large Proof Repair Dataset” 38

PRISM

QED

Old

QED

New

Meta-
data

Infrastructure 
challenges!

Important for considering large-scale ramifications of changes 

Can be used by ML researchers!



Software Development Life Cycle

Requirements Design Verification

QED

Implementation Maintenance

QED

Cunningham et al (2022) “Towards Autoformalization of Mathematics 
and Code Correctness: Experiments with Elementary Proofs”  

Autoformalization



QED
Cunningham et al (2022) “Towards Autoformalization of Mathematics and Code Correctness: Experiments with Elementary Proofs”  

Autoformalization techniques may be 
useful for verifying code!



Software Development Life Cycle

Requirements Design Verification

QED

Implementation Maintenance

QED



PROOF  

ENGINEERS

Software Development Life Cycle

Requirements Design Verification

QED

Implementation Maintenance

QED

Ringer et al (2020) “REPLica: REPL instrumentation for Coq Analysis”

Need to carefully consider the 
process when developing  

ML-based tools



Aspirational ML-based tools

ML tool

QED

ML tool

QED

Property-
based testing 



How about an LLM?

LLMs produce good answers

LLMs produce convincing wrong answers

Proof assistant is an oracle

Theorem proving is potentially a power domain for LLM use



Takeaways

Requirements Design Verification

QED

Implementation Maintenance

QED

• Current research in ML for formal software verification has only 
just scratched the surface!  

• Need more consideration of the software development process 
• Will lead to more usable tools for practitioners and adoption of 

techniques
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