Machine Learning for Theorem Proving

Kaiyu Yang Albert Q. Jiang Emily First



Speakers

Kaiyu Yang Albert Q. Jiang Emily First
Kaiyu is a postdoc at Caltech, Albert is a Ph.D. student at Emily is a postdoc at UCSD, working
working on machine learning for Cambridge, working on mathematical on automatically generating proofs
formal theorem proving reasoning with language models of software correctness

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 1



Panelists

Anima Anandkumar
Caltech

Alex Sanchez-Stern
UMass Amherst

Zhangir Azerbayev
Princeton

Dawn Song
UC Berkeley

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

Noah Goodman
Stanford

Sean Welleck
uw, Al2 -> CMU



Outline

/

\_

Presentation (2 hours)

/

Panel (30 minutes)

LLMs, mathematical reasoning, code generation, verification, Al4Science, and more!

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023



Outline

/ Presentation (2 hours) \
e Part I: Fundamentals

* What is theorem proving? Why is it important for Al?
* Demo: a simple LLM-based prover

\_ /

[ Panel (30 minutes) ]

LLMs, mathematical reasoning, code generation, verification, Al4Science, and more!

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023



Outline

/

\_

Presentation (2 hours)

* Part I: Fundamentals
* What is theorem proving? Why is it important for Al?
* Demo: a simple LLM-based prover

* Part ll: Advanced topics
* Recent work and open problems
* Machine learning, mathematics, and natural language
* Machine learning for software verification

\

/

Panel (30 minutes)

LLMs, mathematical reasoning, code generation, verification, Al4Science, and more!

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023



Outline

/

\_

Presentation (2 hours)

* Part I: Fundamentals
* What is theorem proving? Why is it important for Al?
* Demo: a simple LLM-based prover

* Part ll: Advanced topics
* Recent work and open problems
* Machine learning, mathematics, and natural language
* Machine learning for software verification

\

/

Panel (30 minutes)

LLMs, mathematical reasoning, code generation, verification, Al4Science, and more!

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023



Teaser: LLMs as Copilots for Theorem Proving

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023


https://github.com/yangky11/lean4-example/tree/ml4tp-tutorial

Formal Theorem Proving

Theorem

4

Proof

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023



Formal Theorem Proving

Theorem theorem set_inter_comm (s t : Set a) :
‘ ;M [Set.mem_inter_iff]
- ;f4f—(xs, xt)
act (xt, xs)
. rintro (xt, xs)
F’r()()f exact (xs, xt)

* Theorems/proofs represented formally as programs

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023



[Hales et al., "A Formal Proof of the Kepler Conjecture", 2017]

FO r m a | T h e O re m P rOV| n g [Leroy et al., "CompCert - A Formally Verified Optimizing Compiler", 2016]

Theorem EEEIRESENTEECINCEIEE

' constructor \ Mathematics

J |
rintro {(xs, xt) :
rintro (xt, xs) |
PrOOf exact (xs, xt) E
:
|
|
|
\ Software |
* Theorems/proofs represented formally as programs . -7

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023 10



Formal Theorem Proving

Theorem EREEIREETEOECINCEIEGIONE

ext X

simp [Set.mem_inter_iff]
ll constructor

rintro {(xs, xt)
exact (xt, xs)
. rintro (xt, xs)

Proof exact (xs, xt)

* Theorems/proofs represented formally as programs

* Proofs can be checked easily

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

11



Formal Theorem Proving

Theorem EREEIREETEOECINCEIEGIONE

ext X

simp [Set.mem_inter_iff]
ll constructor

rintro {(xs, xt)
xact (xt, xs)

. rintro (xt, xs)

Proof exact (xs, xt)

X

* Theorems/proofs represented formally as programs

* Proofs can be checked easily

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

12



Why is Theorem Proving Important for Al?

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

13



The Era of Large Language Models (LLMs)

@GPT—4 "»Claude -1
/ﬁ $

How many cats are there? What are they doing?

ChatGPT
There are six cats in the image, and they all appear to be looking up at something

out of the frame with interest. Some have their mouths open as if they are meowing

or expecting something, perhaps food or a treat, which is a common reason for cats

[Ma et al., Eureka, 2023] [Wang et al., Voyager, 2023] to gather and look up like this.

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 14



Theorem Proving and LLMs

{ _________

|
I Theorem proving |
! )

Mathematical reasoning
with LLMs

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

Code generation
with LLMs

15



Theorem Proving and LLMs

{ _________

|

<—| Theorem proving |
! )

Mathematical reasoning
with LLMs

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

16



Mathematical Reasoning with LLMSs

e GPT-4 scored 89th percentile on SAT Math

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

17



Mathematical Reasoning with LLMSs

e GPT-4 scored 89th percentile on SAT Math

* Specialized math LLMs: Minerva, MetaMath, WizardMath, MAmmoTH, Llemma

~

Input:
Let f(r) = Y725 + = 3= + 3= + - + 5057 Find 332, f (k).

LLEMMA 34B solution:

We have
0o oo 2008 4 2008 oo 4 2008 | 0 4 2008
CES B SEEINIEEIIEI BT
k=2 k=2 j=2 j=2 k=2 j=2 k=0 j=2
_208 1 _20208( 1 _l)
iG-1) g \i-1
(1oL, (L1, (L1
T\l 2 2 3 2007 2008
1
=1- —
2008
2007
2008

Final Answer: The final answer is 200¢.

[Lewkowycz et al., Minerva, 2022]

[Azerbayev et al., LIemma, 2023]

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

18



Informal vs. Formal Mathematical Reasoning

theorem gcd_self (n : N) :

0ld gcd

S simp [gcd]
- unfold gcd - rw [mod_self]

rw [mod_self] unfold gcd
nfold gcd rfl

Important for LLMs to tackle advanced mathematics

* Grounded in environments that can provide feedback

* Simple and rigorous evaluation: formal proofs can be
checked (no hallucination)

Informal < > Formal

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023 19



Checking Mathematical Proofs is Hard for Humans

-I'C.:Ouanta

Titans of Mathematics Clash Over Epic
Proof of ABC Conjecture

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

20



Theorem Proving and LLMs

{ _________

|

<—| Theorem proving |
! )

Mathematical reasoning
with LLMs

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

21



Theorem Proving and LLMs

{ _________
|

<—| Theorem proving p—
! )

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

Code generation
with LLMs

22



Code Generation with LLMs

f ged (x : int, y : int) -> int:
"""Compute the greatest common divisor of " "x'°
>>> gcd(10, 5)
5

>>> gcd(2, 3)
1

>>> gcd(8, 12)
4

Passing a few testing examples # correctness

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 23



What if x and y are negative?

Code Generation with LLMs

def gecd (x : int, y : int) -> int:
"""Compute the greatest common divisor of " "x'°
>>> gcd(10, 5)
5
>>> gcd(2, 3)

1
>>> gcd(8, 12)

4

Passing a few testing examples # correctness

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 24



3]: gcd(-10, -5)
° ° Traceback (most recent call last)
Code Generation with LLMs E
File
ged (x : int, y : int) -> int:

"""Compute the greatest common divisor of "
>>> gcd(10, 5)

y:
gcd(x, % X)
gcd(2, 3) ged(x % y, y)

gcd(8, 12)

X
nun

gcd(x, % X)
ged(x % y, y)

:11, in
5 ¢ , ¥ &

: maximum recursion depth exceeded in comparison

Passing a few testing examples # correctness

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023 25




How Can We Trust Al-Generated Code?

Freethink*

GitHub CEO says Copilot will write 80%
of code “soonerthan later”

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

26



Theorem Proving for Verified Code Generation

* Generate code + formal specification (theorem) + formal proof

[Sun and Sheng et al., "Clover: Closed-Loop Verifiable Code Generation", 2023]



Theorem Proving for Verified Code Generation

* Generate code + formal specification (theorem) + formal proof

[Sun and Sheng et al., "Clover: Closed-Loop Verifiable Code Generation", 2023]

N

|
|
\ Codegeneration = — = = - - —m o o - e - - - /

Specification (Theorem)

I I N N S S S -y,

-

Verified Code generation o & o o o o o o o e e e e e - - — - - -

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

‘________—

28



Theorem Proving for Verified Code Generation

* Generate code + formal specification (theorem) + formal proof

[Sun and Sheng et al., "Clover: Closed-Loop Verifiable Code Generation", 2023]

N

|
|
\ Codegeneration = — = = - - —m o o - e - - - /

Specification (Theorem)

Proof

I I N N S S S -y,

-

Verified Code generation o & o o o o o o o e e e e e - - — - - -

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

‘________—

29



Theorem Proving and LLMs: Takeaways

f————————-
|
<—| Theorem proving p—
' )
Mathematical reasoning Code generation
with LLMs with LLMs

* Elementary math -> advanced math
* Verified code generation

* Feedback & evaluation at scale: Al mathematicians/programmers

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

30



How to Prove Theorems (with Machine Learning)?

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 31



Proof Assistants (Interactive Theorem Provers)

Theorem EEEIEEETEOECINCEEGIONE

ext X

‘ simp [Set.mem_inter_iff]
constructor

Cro (XS, xt)

exact (xt, xs)

. rintro (xt, xs)

P roof exact (xs, xt)

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

32



Proof Assistants (Interactive Theorem Provers)

2. N
Humans <+ — & Proof assistants

IDEs for writing formal proofs

/
; theorem set_inter_comm (s t : Set a) :
I
|
|
|
! ) [Set.mem_inter_iff]
| n<triictor
| STructol
; - rintro (xs, xt)
! xact (xt, xs)
; ro {xt, xs)
1
\ exact (xs, xt)

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023 33



Examples of Proof Assistants

\ )
S48 Isabelle ) Coq Lean
\ &g" j)

[Nipkow et al., 2002] [Barras et al., 1997] [de Moura et al., 2015]

e Large formal libraries: ~250K e >100K proofs in different repos e ~100K proofs in Mathlib
proofs * Popular for software verification, e.g., * Liquid tensor experiment
CompCert [Leroy et al., 2016] [Commelin, 2022]

e Polynomial Freiman-Ruzsa
conjecture (led by Terence Tao)

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 34



Examples of Proof Assistants

e Large formal libraries: ~250K
proofs

[First et al., Baldur, 2023]

[Jiang et al., Thor, 2022]

[Mikuta et al., Magnushammer, 2023]
[Jiang et al., DSP, 2023]

[Wu et al., Autoformalization, 2022]

[Li et al., IsarStep, 2021]

[Wang and Xin et al., LEGO-Prover, 2023]

Coq

[Barras et al., 1997]

. ])
>
e >100K proofs in different repos

* Popular for software verification, e.g.,
CompCert [Leroy et al., 2016]

[Huang et al., GamePad, 2018]

[Yang and Deng, CoqGym, 2019]

[Sivaraman, et al., Lemma Synthesis, 2022]
[Sanchez-Stern et al., Proverbot9001, 2020]
[Ringer et al., REPLica, 2020]

[Sanchez-Stern and First et al., Passport, 2023]

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

Lean
[de Moura et al., 2015]

~100K proofs in Mathlib

Liquid tensor experiment
[Commelin, 2022]

Polynomial Freiman-Ruzsa
conjecture (led by Terence Tao)

[Han et al., PACT, 2022]

[Polu et al., 2023]

[Lample et al., HTPS 2022]
[Want et al., DT-Solver, 2023]
[Yang et al., LeanDojo, 2023]
[Thakur et al., COPRA, 2023]

35



Examples of Proof Assistants

e Large formal libraries: ~250K
proofs

[First et al., Baldur, 2023]

[Jiang et al., Thor, 2022]

[Mikuta et al., Magnushammer, 2023]
[Jiang et al., DSP, 2023]

[Wu et al., Autoformalization, 2022]

[Li et al., IsarStep, 2021]

[Wang and Xin et al., LEGO-Prover, 2023]

[Barras et al., 1997]

! Coq
j)

e >100K proofs in different repos
* Popular for software verification, e.g.,
CompCert [Leroy et al., 2016]

[Huang et al., GamePad, 2018]

[Yang and Deng, CoqGym, 2019]

[Sivaraman, et al., Lemma Synthesis, 2022]
[Sanchez-Stern et al., Proverbot9001, 2020]
[Ringer et al., REPLica, 2020]

[Sanchez-Stern and First et al., Passport, 2023]

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

Lean
[de Moura et al., 2015]

~100K proofs in Mathlib

Liquid tensor experiment
[Commelin, 2022]

Polynomial Freiman-Ruzsa
conjecture (led by Terence Tao)

[Han et al., PACT, 2022]

[Polu et al., 2023]

[Lample et al., HTPS 2022]
[Want et al., DT-Solver, 2023]
[Yang et al., LeanDojo, 2023]
[Thakur et al., COPRA, 2023]

36




Proving Theorems Using Language Models

radd_abc : YVabc:N, a+b+c=a+c+b:

h_proof

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

38



Proving Theorems Using Language Models

ladd_abc : Yabc: N, a+b+c

h_proof

theorem add_abc : Vabc : N, a+b+c
intro a b ¢
rw [Nat.add_right_comm]

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

39



Proving Theorems Using Language Models

Input' Theorem theorem add_abc : Vabc: N, a+b+c=a+c+b

intro a b ¢
rw [Nat.add_right_comm]

Output: Proof

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

40



Generating Proof Steps (Tactics)

theorem add_abc : Yabc: N, a+b+c=a+c+b:

intro a b ¢

rw [Nat.add_right_comm]

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

41



Generating Proof Steps (Tactics)

theorem add_abc : Yabc: N, a+b+c=a+c+b:

intro a b ¢

rw [Nat.add_right_comm]

Proof state

FVY(abc:N),a+b+c=a+c+b

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

42



Generating Proof Steps (Tactics)

theorem add_abc : YVabc: N, a+b+c=a+c+b:
intro a b ¢

rw [Nat.add_right_comm]

Proof state Tactic

introabc abc N
Fa+b+c=a+c+b

\ 4

FVY(abc:N),a+b+c=a+c+b

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023



Generating Proof Steps (Tactics)

theorem add_abc :

intro a b ¢

Vaboc:

N, a+b+c=a+c+b:

rw [Nat.add_right_comm]

Proof state

Tactic

introabc

FVY(abc:N),a+b+c=a+c+b

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

\ 4

abcN
Fa+b+c=a+c+b

rw [Nat.add_right comm]

N
»

44



Generating Proof Steps (Tactics)

theorem add_abc : Yabc: N, a+b+c=a+c+b:

intro a b ¢

rw [Nat.add_right_comm]

Tactic generator

Input: Proof state Output: Tactic

introabc

\ 4

FV(abc:N),a+b+c=a+c+b

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

45



Generating Proof Steps (Tactics)

theorem add_abc : Yabc: N, a+b+c=a+c+b:

intro a b ¢

rw [Nat.add_right_comm]

norm_cast

introabc

FV(abc:N),a+b+c=a+c+b \
apply Nat.rec

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

\ 4

46



Searching for Proofs

theorem add_abc : Va b c : N,

intro a b ¢

a+b+c=a+c+b:

rw [Nat.add_right_comm]

FVY(abc:N),a+b+c=a+c+b

norm_cast

introabc

\ 4

\

apply Nat.rec

abcN
Fa+b+c=a+c+b

norm_cast

rw [Nat.add_right comm]

\\\\‘ apply Nat.rec

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

N
»

4

47



Searching for Proofs

theorem add_abc : Yabc: N, a+b+c=a+c+b:

intro a b ¢

rw [Nat.add_right_comm]

Classical proof search algorithms
e Depth first search (DFS)
e Breadth first search (BFS)

introabc abc: N

rw [Nat.add_right_comm]

: = >
FV(abc:N),a+b+c=a+c+b Fa+b+c=a+c+b

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

v

48



Demo:
A Simple Theorem Prover Using Language Models

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 49


https://github.com/yangky11/ml4tp-tutorial/blob/main/main.ipynb
https://github.com/yangky11/ml4tp-tutorial/blob/main/main.ipynb

Improving the Simple Prover

* Proof search

* Premise selection

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

50



Best First Search

..
< * Explore the most promising node

e e Use accumulated scores from the tactic
generator to rank the nodes

T
\4
T ¢
T

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023



Best First Search

- ..
* Explore the most promising node
e e Use accumulated scores from the tactic
generator to rank the nodes
-
e -0.1 + (-0.05) = -0.15

-0.05 M
-
-

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

52



Best First Search

- ..
- * Explore the most promising node
.. e Use accumulated scores from the tactic
generator to rank the nodes
- .. . .
R * Simple and widely used
F ... (o
N [Han et al., PACT, ICLR 2022]
[Polu et al., ICLR 2023]
[Jiang et al., Thor, NeurlPS 2022]
|— [Yang et al., LeanDojo, NeurlPS 2023]
F ..
- ..

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 53



[Lample et al., "HyperTree Proof Search for Neural Theorem Proving", NeurlPS 2022]

Hyper Tree Proof Search

 Inspired by Monte Carlo Tree Search (MCTS)

e Update visit counts and estimated values for each node

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 54



[Lample et al., "HyperTree Proof Search for Neural Theorem Proving", NeurlPS 2022]

Hyper Tree Proof Search

 Inspired by Monte Carlo Tree Search (MCTS)

e Update visit counts and estimated values for each node

Selection

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 55



[Lample et al., "HyperTree Proof Search for Neural Theorem Proving", NeurlPS 2022]

Hyper Tree Proof Search

 Inspired by Monte Carlo Tree Search (MCTS)

e Update visit counts and estimated values for each node

Selection Expansion

N(go,to)i Cf T T
@

N (g4, t1)=0
l W(gs,tq1)=0

.

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 56




[Lample et al., "HyperTree Proof Search for Neural Theorem Proving", NeurIPS 2022]

Hyper Tree Proof Search

 Inspired by Monte Carlo Tree Search (MCTS)

e Update visit counts and estimated values for each node

Selection Expansion Back-propagation

ve(g)=(1x0.1)x0.4

N (g, t1) =2

W(g,tg)=0.3 W(g,t1)]=0.5 W(g,t2)=0.1
{90! S St W(g,t1)=0.5+(1x0.1)x0.4

@ 9 @ 9

N (gOl to) =0
W (go, to) =0

o® oo e @

N(g,to)=1 N(g,t1)]=1 N (g, t2) =0 T

vr(g1)=0.4

@ v (go) =1x0.1 @

(go, to)=1 N (g1, to)=1
W(go to)=1x0.1 W(g1,t0)=0.4
Y ( ) =1
Vrigz =0.4

N (g4, t1) =0
W(gs,t1)=0

o9 0o e

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 57

@




[First et al., "Baldur: Whole-Proof Generation and Repair with Large Language Models", FSE 2023]

s Proof Search Really Necessary?

e Baldur: It’s possible to build state-of-the-art provers without search

* 6B and 62B models finetuned from Minerva on Isabelle proofs

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 58



theorem add_abc : Yabc: N, a+b+c=a+c+b := by
intro a b ¢

P Fem |S e S e | e Ct | on rw Nat.add_right_comm]

* Premise selection: A key challenge in theorem proving

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 59



theorem add_abc : Vabc : N, a+b+c=a+c+b:
intro a b ¢

Premise Selection w [Nat.add_right_comn]

* Premise selection: A key challenge in theorem proving

 Studied as a separate task w/o theorem proving

[Irving et al., DeepMath, NeurlIPS 2016]
[Wang et al., "Premise Selection for Theorem Proving by Deep Graph Embedding", NeurlPS 2017]

* Recent work integrate premise selection into theorem proving

[Mikuta et al., "Magnushammer: A Transformer-based Approach to Premise Selection", 2023]
[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurlIPS 2023]

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 60



[Mikuta et al., "Magnushammer: A Transformer-based Approach to Premise Selection", 2023]

Magnushammer

* Premises selected by Transformer + a simple symbolic prover

Available Proof State

Premises

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 61



[Mikuta et al., "Magnushammer: A Transformer-based Approach to Premise Selection", 2023]

Magnushammer

* Premises selected by Transformer + a simple symbolic prover

Premise Proof Stgte
Embedding Embedding

4 )
SELECT Premise SELECT State
Projection Projection
Transformer Transformer
Backbone Backbone

Available Proof State
Premises

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 62



[Mikuta et al., "Magnushammer: A Transformer-based Approach to Premise Selection", 2023]

Magnushammer

* Premises selected by Transformer + a simple symbolic prover

Ordered
Premises
(SELECT)

T

Ur’ Sci;r:ﬁ;r:ﬁy “‘

Premise Proof Stgte
Embedding Embedding

4 )

SELECT Premise SELECT State
Projection Projection

1 0

Transformer Transformer
Backbone Backbone

Available Proof State
Premises

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 63



Magnushammer

[Mikuta et al., "Magnushammer: A Transformer-based Approach to Premise Selection", 2023]

* Premises selected by Transformer + a simple symbolic prover

Ordered Ordered
Premises Premises
(SELECT) (RERANK)

T Textual T
- representation
F) Qo_smg of top premises Sigmoid
( Similarity (—‘
A
Premise Proof State
Embedding Embedding
4 )

SELECT Premise SELECT State RERANK
Projection Projection Projection
Transformer Transformer Transformer
Backbone Backbone Backbone

o
Proof State | Premise
) A
Available Proof State
Premises

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 64



Magnushammer

[Mikuta et al., "Magnushammer: A Transformer-based Approach to Premise Selection", 2023]

* Premises selected by Transformer + a simple symbolic prover

Ordered Ordered
Premises Premises
(SELECT) (RERANK)

T Textual T
- representation
F) Qo_smg of top premises Sigmoid
( Similarity (—‘
A
Premise Proof State
Embedding Embedding
4 )

SELECT Premise SELECT State RERANK
Projection Projection Projection
Transformer Transformer Transformer
Backbone Backbone Backbone

o
Proof State | Premise
) A
Available Proof State
Premises

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 65



[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurlPS 2023]

ReProver: Retrieval-Augmented Prover

* Given a state, we retrieve premises from accessible premises

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 66



[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurlPS 2023]

ReProver: Retrieval-Augmented Prover

* Given a state, we retrieve premises from accessible premises

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 67



[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurlPS 2023]

ReProver: Retrieval-Augmented Prover

* Given a state, we retrieve premises from accessible premises

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 68



[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurlPS 2023]

ReProver: Retrieval-Augmented Prover

* Given a state, we retrieve premises from accessible premises

* Retrieved premises are concatenated with the state and used for tactic generation

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 69



[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurlPS 2023]

ReProver: Retrieval-Augmented Prover

* Given a state, we retrieve premises from accessible premises

* Retrieved premises are concatenated with the state and used for tactic generation

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 70



[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurlPS 2023]

Premise Retrieval Improves Theorem Proving

Percentage of Theorems Proved

60
51.4
50 47.5
40
30 26.2
22.9

20
10

0

Dataset 1 Dataset 2

m ReProver w/o retrieval m ReProver

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 71



Recap

 Theorem proving can help LLMs understand mathematics and generate verifiable code

e LLMs for theorem proving
* Tactic generator: state -> tactics
* Proof search: tactics -> proof

Slides, demos, etc. will be available at:
machine-learning-for-theorem-proving.github.io

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

76


https://machine-learning-for-theorem-proving.github.io/

Open-Source Tools

lean-dojo/ lean-dojo/ lean-dojo/

LeanDojo ReProver LeanCopilot

Tool for data extraction and interacting with Lean Retrieval-Augmented Theorem Provers for Lean LLMs as Copilots for Theorem Proving in Lean

programmatically.

Rzgmme @5 : DJ1D4 ﬁg{so ??1k (9] Rlﬁ . ®|1 CJJg ﬁ;:? %elsk (9] Rxf " ®|2 DJZ) ﬁsets ?fk (o)
Extract data & interact with Lean Training & evaluation Use LLMs in proof assistants

Isabelle: PISA
* Coqg: GamePad, CoqGym, Proverbot9001

Lean: LLMStep, lean-gym
Others: HOList, INT

Tutorial on Machine Learning for Theorem Proving @ NeurIPS 2023 77


https://github.com/albertqjiang/Portal-to-ISAbelle
https://github.com/ml4tp/gamepad
https://github.com/princeton-vl/CoqGym
https://github.com/UCSD-PL/proverbot9001
https://github.com/wellecks/llmstep
https://github.com/openai/lean-gym
https://sites.google.com/view/holist/home
https://github.com/albertqjiang/INT

Related Events @ NeurlPS 2023

LeanDojo
e Oral: 10 AM Tuesday
e Poster: 10:45 AM Tuesday

MATH-AI Workshop @ @
* Friday, Room 217-219 .08 02

* Posters of Lean Copilot and other .§.§-::’§ 3§:.§:§;'§::§§°
interesting works! voe *on %08 o3ss 82302,

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

78



Outline

/

\_

Presentation (2 hours)

* Part I: Fundamentals
* What is theorem proving? Why is it important for Al?
* Demo: a simple LLM-based prover

* Part ll: Advanced topics
* Recent work and open problems
* Machine learning, mathematics, and natural language
* Machine learning for software verification

\

/

Panel (30 minutes)

LLMs, mathematical reasoning, code generation, verification, Al4Science, and more!

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

79



Outline

/

\_

Presentation (2 hours)

* Part I: Fundamentals
* What is theorem proving? Why is it important for Al?
* Demo: a simple LLM-based prover

* Part ll: Advanced topics
e Recent work and open problems
* Machine learning, mathematics, and natural language
* Machine learning for software verification

\

/

Panel (30 minutes)

LLMs, mathematical reasoning, code generation, verification, Al4Science, and more!

Tutorial on Machine Learning for Theorem Proving @ NeurlPS 2023

80



Guiding Formal Maths with

Informal Maths
Albert Q. Jiang, University of Cambridge



What is formal mathematics

Principia Mathematica Kepler Conjecture Liquid Tensor Experiment
Russell and Whitehead Hales Scholze and Commelin

Simple theorems Complex theorems Complex theorems about
about simple objects: about simple objects: complex objects:

1+1=2 Optimal packing of Theorem about condensed
spheres real vector spaces

1910 2015 2022 2



Formal mathematics in real time

On a conjecture of Marton

W. T. Gowers, Ben Green, Freddie Manners, Terence Tao

Formalised in 3 weeks!

Polynomial Freiman-Ruzsa conjecture

2023

v



What is a proof assistant?

e Has some logical/type-theory basis, with axioms, rules and theorems
e Proving a theorem:
o lteratively applying rules of the formal system to transform the goal

o Until it becomes trivial



Example of a proof in Lean

2 v example (mn k : N) (he : n<m) :n+ksm+k :=begin

3 induction Kk, )

4 v | [

5 exact he ~ Firstsubgoal: n+0<m+0

7 v| { hi

8 rw nat.succ_le_succ_iff, ‘ Second subgoal :

9 exact k_ih J n+k<m+ks>n+k+1<m+k+1
10 ¥

11 end



The goal of automated formal theorem proving

- _______________ ?- _______________ -

Verifier




How can machine learning come in?

Components of a Markov Decision Process

state action reward

A board position Place a stone

IR

1, 0, or -1 at end

eo i_—&rg’—l:kr——- of the game
Goal (s) to prove Use a tactic

Theorem 1 for QED,
Proving F 141 = 2 Eq.refl _

O for failure

transition



How can machine learning come in? (cont.)

a Selection b  Expansion c Evaluation d
PR - /’) =
Q+uP) SN Q+ulP) 5 ot
¢ : |
| 1 -m 1 1+ 1+
i i i
Q +u(P n/nax Q + u(P)

N ]

()

)

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489.



How can machine learning come in? (cont.)

(mnk:N)(he:nsm):n+k<m+k

linduction k

[ FN+0=m+0

(k_ih:n+k<m+Kk): n+k_n.succsm+k_n.succ J

exact ho

O

W hal.stee e stiee iir

( (k_ih:n+k=sm+k): n+k nSm+k n

1

exact k_ih

Lample, Guillaume, et al. "Hypertree proof search for neural theorem proving." Advances in Neural Information Processing Systems 35 (2022):

26337-26349.



But there’s an important aspect of mathematics

Mathematics is mostly written in
natural language and not utilised by
machine learning at this point!

Not yet fully formalised on a computer!

10



What we have

— T
— A

& O
@ AoPS
& Ao

Artiat ProblermiSpbing Informal statements

\ //

Informal proofs




The goal of this presentation

//
\

T
e

\

Informal statements

//

Informal proofs

12



Making better informal reasoners

//
\

T
S

\

Informal statements

//

Informal proofs

13



Make better informal reasoners

1. Find high-quality mathematical content online

.........................................................

<html>
<head>

...........................................

</head>
<body>

<p>

This is a paragraph with inline math.

You should see a quadratEE function before this sentence.
</p>

</body>
</html>]

14



Data collection: OpenWebMath

Crawl [ 336M9

237B
HTML pages

Prefilter
T
w
i
Language ID

MathScore Filter

= 66M =«

Perplexity Filter

= 59M «

Deduplication

=7.8M =«

Manual Filter

-

iy

OpenWebMath
6.3M 14.7B

documents tokens

Paster, Keiran, et al. "OpenWebMath: An Open Dataset of High-Quality Mathematical Web Text." arXiv preprint arXiv:2310.06786 (2023).

15



Make better informal reasoners (cont.)

2. Fine-tune or continue pretraining a strong base language model on it

PaLM CodelLlama

Lewkowycz, Aitor, et al. "Solving quantitative reasoning problems with language models." Advances in Neural Information Processing Systems 35
(2022): 3843-3857.
Azerbayev, Zhangir, et al. "Lliemma: An open language model for mathematics." arXiv preprint arXiv:2310.10631 (2023).

16



Specialising models on informal maths

Google’s secret
sauce mathematical
dataset (closed)

PalLM Minerva
(closed) (closed)
ProofPile 2 =
OpenWebMath + LLEMMAm
Code + Arxiv (open)
Codellama (open)

(open)

17



Turning informal data into formal ones

— T
— A

Informal statements -

\ //




Turning informal data into formal data

Autoformalization with large language models

Informal
statements

“Bonjour”

“Good day”

Wu, Yuhuai, et al. "Autoformalization with large language models."

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

Advances in Neural Information Processing Systems 35 (2022): 32353-32368.

19



Does this work?

Yes, to an extent.

Manually examined 150
informal — formal statement
translations. Correctness rate
is 25%.

Drawback: we don't
automatically know which
translations are right.

Informal statements

i
Formal statements Formal proofs

Additional data



Put everything together

//
\

T
e

\

Informal statements

//

Informal proofs

21



Informal Statement: Show that for any real number a, 10a < 28a? + 1.

Informal Proof:
It suffices to show 0 < 28a* — 10a + 1. First, consider completing the square for 284> — 10a and

observe that (a — 25’—8)2 =a’—32a+(5/28). Since 0 < (a — —5—)2, we get0 < a®— 22a+(5/28)%.

28
Multiplying by 28 and simplifying gives 0 < 28a* — 10a + (25/28). Since 25/28 < 1, the result
follows.

Formal Statement:

theorem algebra_binomnegdiscrineq 10alt28asgpl:
fixes a :: real
shows "10 » a < 28 » a"2 + 1"

Alignment challenge: different levels of reasoning

Solution: translate into
proof sketches

Formal proof sketches
encapsulate the high-level
ideas of the proof.

They are better aligned
with the informal proofs

We copy segments of the
informal proof as in-line
comments to create (even)
better alignment.

22



Getting formal proofs: Draft, Sketch, and Prove

Informal proof

Statement
godn ) =1and | | e ot e |
lem(n, 4) = 28,

. Thenn=1-28/4=1,
show that n is 7. oA i

Informal

Proof Writer

Draft informal proof

Jiang, Albert Q., et al. "Draft, sketch, and prove: Guiding formal theorem provers with informal proofs." arXiv preprint arXiv:2210.12283 (2022).



Getting formal proofs: Draft, Sketch, and Prove

Formal sketch

Informal proof have cl: “1%28 = n*4”
We know that ged(a, b) - Icm(a, b) = ab, uSLng S08mS
hence 1-28 =n-4. SPEO0T

then have c2: “n = 1*28/4"
Thenn=1-28/4=17, <proof>
completing the proof. M ~ then show ?thesis
............................................................................... s
4

Autoformalizer

32

Generate formal sketch

Jiang, Albert Q., et al. "Draft, sketch, and prove: Guiding formal theorem provers with informal proofs." arXiv preprint arXiv:2210.12283 (2022).

24



Getting formal proofs: Draft, Sketch, and Prove

Formal sketch Verified formal proof

have cl: “1*28 = n*4” have cl: “1*28 = n*4”
using assms

using assms
<proof> by (smt (z3) prod_gcd_lcm nat)

then have c2: “n = 1%28/4" then have c2: “n = 1%28/4"
<proof> by auto

Off-the-shelf
Prover

[

Prove remaining gaps

Jiang, Albert Q., et al. "Draft, sketch, and prove: Guiding formal theorem provers with informal proofs." arXiv preprint arXiv:2210.12283 (2022).

25



Benchmark

e MiniF2F = Reference benchmark developed by
OpenAl

e Formalized problems from olympiads (IMO, AIME,
AMC), high-schools and undergraduate math classes

e Valid / Test splits:
o 488 problems
o  Metamath / Isabelle / Lean / Hol-light

Test Set  Validation Set
TOTAL 244 244
IMO 20 20
AIME 15 15
AMC 45 45
Level 5 14 14
Level 4 14 14
Algebra Level 3 14 14
Level 2 14 14
Level 1 14 14
MATH Tevell | 16 16
Level 4 11 11
Number Theory | Level 3 11 11
Level 2 il 11
Level 1 11 11
Algebra 18 18
CUSTOM Number Theory 8 8
Induction 8 8

26



Results

#Successful Proofs

200 -

150

100 -

0
o

MiniF2F Problems Solved (out of 488)

—— Human informal proof drafts
—— Minerva (540B) proof drafts
—— Minerva (62B) proof drafts
—— Minerva (8B) proof drafts
—— Codex proof drafts

0 20 40 60 80 100
#Autoformalization Attempts Per Problem

27



Takeaways

- Machine learning methods for formal mathematics should not discard informal

mathematics
- That's where (almost) all the data is!

- LLMs gave us the opportunity to realistically convert informal maths to formal

maths
- But the detailed implementation needs careful thought

28



Machine Learning for
Formal Software Verification

Emily First, Albert Q Jiang, Kaiyu Yang

NeurlPS Tutorial on Machine Learning for Theorem Proving
December 11, 2023



Quick Recap

e Proof assistants

. 2.abeibe (abj {9'=3

' 1
0,
o.xff x+C
\ /
\ / N /
VA==
P e =y ~ 4
A
\
i






Software Bugs Matter

100CIe

In 2020, CISQ estimated that software failures cost
the economy $1.56 trillion dollars annually



Formal Software Verification

@ )

aED Specifications Program implementation

@S,

Proof Engineer

@ )
- Think about the desired & actual behavior of the program QED
- Perhaps finding & fixing bugs in the process
- Make explicit which parts of the system are trusted
- Decrease the burden of trust as more of the system is verified G /

Mathematical proofs
Ringer et al. (2020) “QED at Large: A Survey of Engineering of Formally Verified Software”



Software Development Life Cycle

Requirements

The length of areversed list ~  ~ Theorem len rev_unchanged:
is the same as the lengthof = » forall (A: Type) (1: list A),

the original list length (rev 1) = length 1.



Software Development Life Cycle

Requirements

Design

Helper
Lemmas!

Theorem len rev unchanged:
forall (A: Type) (1: list 4),
length (rev 1) = length 1.

Lemma app length : forall 1 1' : list A,
length (14++1') = length 1 + length 1'.



Software Development Life Cycle

O

Requirements ==y Design w3

<;Efé:> Fixpoint rev (l:list A) : list A :=
match 1 with

J [1 => []

X s 1" => rev 1' ++ [x]

Implementation

end.


https://coq.inria.fr/doc/master/stdlib/Coq.Lists.List.html#rev
https://coq.inria.fr/doc/master/stdlib/Coq.Lists.List.html#l:323
https://coq.inria.fr/doc/master/stdlib/Coq.Init.Datatypes.html#list
https://coq.inria.fr/doc/master/stdlib/Coq.Lists.List.html#ListOps.A
https://coq.inria.fr/doc/master/stdlib/Coq.Init.Datatypes.html#list
https://coq.inria.fr/doc/master/stdlib/Coq.Lists.List.html#ListOps.A
https://coq.inria.fr/doc/master/stdlib/Coq.Lists.List.html#l:323
https://coq.inria.fr/doc/master/stdlib/Coq.Lists.List.html#ae9a5e1034e143b218b09d8e454472bd
https://coq.inria.fr/doc/master/stdlib/Coq.Lists.List.html#ae9a5e1034e143b218b09d8e454472bd
https://coq.inria.fr/doc/master/stdlib/Coq.Init.Datatypes.html#::list_scope:x_'::'_x
https://coq.inria.fr/doc/master/stdlib/Coq.Lists.List.html#rev:324
https://coq.inria.fr/doc/master/stdlib/Coq.Init.Datatypes.html#bc347c51eaf667706ae54503b26d52c6
https://coq.inria.fr/doc/master/stdlib/Coq.Lists.List.html#ddd65c2f7ee73ecec433744948d846bb
https://coq.inria.fr/doc/master/stdlib/Coq.Lists.List.html#ddd65c2f7ee73ecec433744948d846bb

Software Development Life Cycle

(e) )
QED
C
Requirements Design Implementation =% \erification
Proof.
el induction 1.
<§EEEE§::> - auto.
- ! - assert (H: rev (a :: 1) = (rev 1) ++ [a]) by auto.
rewrite H.
o simpl.
rewrite app length.
simpl.

rewrite TIHI.
rewrite PeanoNat.Nat.add 1 r.
reflexivity.

Qed.



Software Development Life Cycle

@ )

G

9

Requirements =~ Design ==

Implementation === \lerification ==~ Maintenance

New
Changes to assertions! New

dependencies! requirements!



Software Development Life Cycle

N .

Requirements =~3» Design =% |Implementation === Verification = Maintenance

@ )

QED

Does anyone actually do this?



Formal Software Verification: real-world examples

(
|
CERTIKOS

Q:clq

Y A Verified Implementation of ML

12



Formal Software Verification: real companies do it

13



Formal Verification: can produce better quality software

(2011)

Yang et al (2011) "Finding and Understanding Bugs in C Compilers”

14



Prohibitively difficult

Verified software requires a lot of time and a lot of proofs in relation to code

Formal Certification of a Compiler Back-end

or: Programming a Compiler with a Proof Assistant

Xavier Leroy

INRIA Rocquencourt
Xavier.Leroy®@inria.fr

Proof is about 8 times

Comprehensive Formal Verification of an OS Microkernel

GERWIN KLEIN, JUNE ANDRONICK, KEVIN ELPHINSTONE, TOBY MURRAY,
THOMAS SEWELL, RAFAL KOLANSKI, and GERNOT HEISER, NICTA and UNSW, Sydney,

Australia

‘We present an in-depth coverage of the comprehensive machine-checked formal verification of selL4, a
general-purpose operating system microkernel.

We discuss the kernel design we used to make its verification tractable. We then describe the functional
correctness proof of the kernel’s C implementation and we cover further steps that transform this result into
a comprehensive formal verification of the kernel: a formally verified IPC fastpath, a proof that the binary
code of the kernel correctly implements the C semantics, a proof of correct access-control enforcement, a
proof of information-flow noninterference, a sound worst-case execution time analysis of the binary, and
an automatic initialiser for user-level systems that connects kernel-level access-control enforcement with
reasoning about system behaviour. We summarise these results and show how they integrate to form a
coherent overall analysis, backed by machine-checked, end-to-end theorems.

The seL4 microkernel is currently not just the only general-purpose operating system kernel that is fully
formally verified to this degree. It is also the only example of formal proof of this scale that is kept current
as the requirements, design and implementation of the system evolve over almost a decade. We report on
our experience in maintaining this evolving formally verified code base.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification; D.4.5
[Operating Systems]: Reliability—Verification

General Terms: Verification; Security; Reliability

bigger than the
compiler code

Additional Key Words and Phrases: seL4, Isabelle/HOL, operating systems, microkernel, L4

11 person years of

Can you trust your compiler? Compilers are assumed to be seman-
tically transparent: the compiled code should behave as prescribed
by the semantics of the source program. Yet, compilers — and espe-
cially optimizing compilers — are complex programs that perform
complicated symbolic transformations. We all know horror stories
of bugs in compilers silently turning a correct program into an in-
correct executable.

For low-assurance software, validated only by testing, the im-
pact of compiler bugs is negligible: what is tested is the executable
code produced by the compiler; rigorous testing will expose errors
in the compiler along with errors in the source program. The picture
changes dramatically for critical, high-assurance software whose

erson years of

on the first page. To copy otherwise. to republish, to
to lists, requires prior specific permission and/or a fe
POPL'06  January 11-13, 2006, Charleston, South
Copyright © 2006 ACM 1-595

Virtually all software that ships today is unverified.

This paper reports on the completion of one half of this
program: the certification, using the Coq proof assistant [2], of
a lightly-optimizing back-end that generates PowerPC assembly
code from a simple imperative intermediate language called
Cminor. A front-end translating a subset of C to Cminor is being
developed and certified, and will be described in a forthcoming

aper.

‘While there exists a considerable body of earlier work on
machine-checked correctness proofs of parts of compilers (see
section 7 for a review), our work is novel in two ways. First, recent
work tends to focus on a few parts of a compiler, mostly opti-
mizations and the underlying static analyses [18, 6]. In contrast,

of the size and complexity of an optimizing

o wo I k

15

the sel.4 microkernel, proot to more recent re-

sults, which extend the )l security properties and
down to the binary lev

The target of our ver 1 part of a system, which
is our motivation for s mponent. The customary
definition of a kernel i rileged mode of the hard-
NICTA is funded by the Austrahan Government as represented by the Department of Broadband, Communi-
cations and the Digital Economy and the Australian Research Council through the ICT Centre of Excellence
program.
Authors’ address: NICTA, Level 4, 223 Anzac Pde, Sydney NSW 2052, Australia; Correspondence email:
gernot@nicta.com.au.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
© 2014 ACM 0734-2071/2014/02-ART2 $15.00
DOI:http://dx.doi.org/10.1145/2560537

ACM Transactions on Computer Systems, Vol. 32, No. 1, Article 2, Publication date: February 2014.



How do programmers deal with hard things?

Automation!

16



Software Development Life Cycle

'. g el ’,,\
QED ] :
'} .
- , (I) y ‘,' N\

Implementation

O

Des'gn

Requirements —3\ Verification /~ Maintenance

 Automating the process using ML
e \Work that has been done with an eye towards ML approaches

e Parts of the process that are largely untouched — opportunities!



Constraint-solver based proof automation

c T g e g e P O - :
N,
> Qi R
Py .‘»‘
4 o\
i 2. N
.
’ﬁ ‘”
g \

=

l‘
M
b
o
V 8
’
p |
)
4
.
7 |
<
_

* Restricted by precomputed facts
* (Cannot perform induction

» Struggle with higher-order logic

C

QED

18




Machine Learning: proof synthesis

Context Proof state

. ""
Y /i
>
¥ 4
4
f
)
.
(A
g
D
1}
, o)

- N -

= - -

= TN OO A -
A

a -

PR e
R |
/
N

/T
S
]

19

tactic

tactics

QED




Machine Learning: proof synthesis

QED

How well does this work for proofs of software correctness?

Succeeds at most 30% of the time

Are only “easy” proofs being synthesized?




Proverbot

) ¢

Y/ o \ W

- »

Agrawal et al (2023) “Proofster: Automated Formal Verification”

Enter a Coq theorem to prove, or select an example from the drop-down menu

Enter your own theorem

PRoofster

Following the theorem statement, start the proof with “Proof." and “Admitted.”

Proofster will attempt to replace "Admitted.” with a Coq proof.

Proofster it!

@

QED




QED

22



(G) )

QED

Sorry, | couldn't synthesize a proof of this theorem for you.




list_forall2_app with induction hint

Require Export List.
Variable A: Type.

Variable B: Type.

Variable P: A -> B -> Prop.

Inductive list_forall2: list A -> list B -> Prop :=
| list_forall2_nil:
list_forall2 nil nil
| list_forall2_cons:
forall a1 al b1 bl,
Palbl->
list_forall2 al bl ->
list_forall2 (a1 :: al) (b1 :: bl).

Theorem list_forall2_app:
forall a2 b2 a1 b1,
list_forall2 a1 b1 -> list_forall2 a2 b2 ->
list_forall2 (a1 ++ a2) (b1 ++ b2).
Proof.
induction 1.

Admitted.

@

QED




PRoofster

Require Export List.
Variable A: Type.

Variable B: Type.

Variable P: A > B — Prop.

Inductive list_forall2: list A — 1list B — Prop :=
| list_forall2_nil:
list forall2 nil nil
| list_forall2_cons:

Visualization of the proof search tree could help
programmer understand why search failed

forall a2 b2 al bil,
list forall2 al bl — 1list forall2 a2 b2 -
list forall2 (a1 + a2) (b1 + b2).

Prooft.

induction 1.

simpl.

intros.

eauto.

intros.
econstructor.
eauto.

@

QED




QED




Online Learning Wt Tactician

QED

[SH
bucket

Locality sensitive hashing |
(LSH) forests for Online random forests

online approximate k-NN

Zhang et al (2021) “Online Machine Learning Techniques for Coq: A Comparison”

27




DIVA ﬁ@ -

Ensemble learning

Models Search Output

4—@—> Proof script
‘:@—>

4—| @—> Proof script
‘—@—bi Proof script
-4—@—> Proof script

28 First et al (2022) “Diversity-Driven Automated Formal Verification”



Ensemble learning DIVA

Models Search Output

-—»‘—I QJ Check

Co

‘—, @—> Proof script
‘—@—bi Proof script
-4—@—> Proof script

29 First et al (2022) “Diversity-Driven Automated Formal Verification”




Software Development Life Cycle

7 N N
X :
a4V N
x> &
\
H ¥
H ) 4§ 1
H ¥ .
{ \' 3
.l ’ B _
' ‘ i
A "
\ {

@ ) |
QED \ g

N Verlflcatl()n

Requirements Design == Implementation Maintenance

“Relevant” Premises

MEINIEE Lemmas,

ST ([ Ml sewniesy | Definitions, etc. | sadummmess

Repository

Approach




Sivaraman et al (2022) “Data-Driven Lemma Synthesis for Interactive Proofs”

31



Software Development Life Cycle

O

Requirements ==y Design =3

X =

(c)

G

QED

Implementation == Verification =

Jaintenance’



Software Refactoring



Nie et al (2021) "Roosterize: Suggesting Lemma Names for Coq Verification Projects Using Deep Learning”

34



Lemma sec_left_sum_tree (X Y:Set) (p : WFT X): Lem{na 1i§t-find-app-30me 11 12 i X
forall (A : X -> X -> Prop), SecureBy A p —-> list_find P (11 ++ 12) = Some (i,x) <«

: list_find P 11 = Some (i,x) V
iniz‘;giiyp(left-sum-hft A) (left_sum_tree Y p). length 11 < i A list_find P 11 = None A list_find P 12 = Some (i - length 11,x).

Proof.
intros A Zsec. split.
simpl in *. intros v w x y z. - intros ([?|[??]]%lookup_app_Some&?&Hleast)%list_find_Some.
destruct x; (repeat (auto; firstorder)). + left. apply list_find_Some; eauto using lookup_app_l_Some.
destruct v; (repeat (auto; firstorder)). + right. split; [lial]. split.
destruct w; (repeat (auto; firstorder)). { apply list_find_None, Forall_lookup. intros j z 7?7.

destruct v; (
destruct w; (
intros. simp

eapply sec_strengthen. rocus Z. apply H. apply HU. by rewrite lookup_app_r, minus_plus by lia.

intros. destruct x0; repeat (auto; firstorder). - intros [(7&7&Hleast)%list_find_Some| (7&H11&(7&?7&Hleast)%list_find_Some)].
destruct y; repeat (auto; firstorder). + apply list_find_Some. split_and!; [by auto using lookup_app_l_Some..|].

simpl in *. intro x. assert (i < length 11) by eauto using lookup_lt_Some.

destruct x; repeat (auto; firstorder). intros j y 7?%lookup_app_Some; naive_solver eauto with lia.

+ rewrite list_find_Some, lookup_app_Some. split_and!; [by auto..|].
intros j y [?|?]%lookup_app_Some 7?; [|naive_solver auto with lia].
by eapply (Forall_lookup_1 (not o P) 11); [by apply list_find_None]l..].

eapply sec_strengthen. Focus 2. apply H. apply HO.
intros. destruct x0; repeat (auto;firstorder).
destruct y0; repeat (auto;firstorder).
Defined.

Qed.

Nie et al (2020) “Learning to Format Coq Code Using Language Models” 35



Software Evolution




N
Need to change 10+ \ = 97
lemmas and definitions %

Change to
dependency!

Q )
OFD

Not just tedious —
can be quite

challenging even for
experts!

EL
8:9: Q@

Q Only
alg & 5 broken able to fix
( &~ ) proofs! 1 proof!
GG ) )

Ringer et al (2020) "REPLica: REPL instrumentation for Coq Analysis”



Proof repair across commits dataset: PRISM

‘IIIIIIIIIIIIIIIIIIIIIIIII

QED QED

C p C

A EEEEEEEEEEEEEEEEEEEEEEERS

“IIIIIIIIII.

’.llllllll

Infrastructure
challenges!

Reichel et al (2023) “Proof Repair Infrastructure for Supervised Models: Building a Large Proof Repair Dataset” 38



Software Development Life Cycle

a ) \
___ [P

=y |Implementation

o .','._*_-‘j;-;. Verification -

Maintenance

Autoformalization

Cunningham et al (2022) “"Towards Autoformalization of Mathematics
and Code Correctness: Experiments with Elementary Proofs”



Theorem. Conszder the followmg series ofcom- Require Import String. :
mands such that t From PLF Require Import Imp.
¢ ;_ t From PLF Require Import Hoare. ¢
> = 3; : § Theorem poly_code_correct: ¢
2 ; ? I g : g .f’ i forall y : nat, j

: } ({Z2=y }}

{ Allow Z = vy, for any natural number y, ahead { "" 2 ; g; 4 S % 7 i
} of running this code then S = 3 x y* +3xy+1{ b ¢ .1 4S %7 ;
aﬁer the set of mstructzons has executed B t it {({S=3*xy*2+3%y+13}. 1

Proof. By application of usual Hoare logic: rci’gtros.

ly hoare_ with

{QZ:::y} ap?Qyzzo? e_seq t

S := 3- (Z=Y/\S=3)

{Z Cyag— ) fassertion).
(7 g A - Autoformalization techniques may be

useful for verifying code!
(Z=yANS=3xy*+5y 1, O 2 £ 3y 4+ 1)

Y%assertion).
all: eapply hoare_consequence_pre;
try (apply hoare_asgn || assn_auto'').
Qed.

Hence, this program 1s shown to be correct.

Cunningham et al (2022) “Towards Autoformalization of Mathematics and Code Correctness: Experiments with Elementary Proofs”

@

QED




Software Development Life Cycle

N

@

G

QED




Software Development Life Cycle

R ) T ’
N 3 v N, V
;\ X 0 =
e\ ‘_-? ‘
L. 3
R \ 3
£ = > - ’ . A \
<Y 2
s 0 D
N\ P .4
N !
~ - ‘
N "
<
4
. ‘
8
3 b
: l
)
\

7O

‘Maintenance’

C

\Requirements’ == Implementation =3 Verificatign’” =

Need to carefully consider the
process when developing
ML-based tools

Ringer et al (2020) “REPLica: REPL instrumentation for Coq Analysis’



Aspirational ML-based tools

- VL tool B

Property-
based testing




How about an LLM?

LLMs produce convincing wrong answers




Takeaways

S ) \
- d I

=y |Implementation

N Verlflcatlon .

Design

Requirements Maintenance

 Current research in ML for formal software verification has only

just scratched the surface!

e Need more consideration of the software development process
e Will lead to more usable tools for practitioners and adoption of
techniques



Panel moderator

T

%\-..m\ﬂ" ”n

L _.ﬁ.w.."ww.“n.w

Azerbayev

1

Zhang



